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Few-body correlations in the QCD phase diagram
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Abstract. From the viewpoint of statistical physics, nuclear matter is a strongly correlated many-particle
system. Several regimes of the QCD phase diagram should exhibit strong correlations. Here I focus on
three- and four-body correlations that might be important in the phase diagram.

PACS. 21.65.+f Nuclear matter – 21.45.+v Few-body systems

1 Introduction

Lattice and effective model calculations provide a rich and
exciting sketch of the phase diagram of Quantum Chro-
modynamics (QCD). Two regions may coarsely be dis-
tinguished: a hadronic phase and a plasma phase. Since
quarks are considered part of the fundamental building
blocks of matter, the existence of a hadronic phase is al-
ready an indication of strong correlations between quark-
antiquark and three-quarks. Further on, in both phases
correlations lead to more interesting phenomena, such as
clustering of nucleons to form nuclei, or superfluidity (in
nuclear matter) and color superconductivity (in quark
matter). In particular in the later cases a weak residual in-
teraction is enough to destabilize the ground state (just as
is the case for the formation of Cooper pairing). These in-
vestigations are usually based on the study of two-particle
correlations. There are reasons to go beyond two-particle
correlations, e.g.:

– Particle production even in a dense environment such
as deuteron formation in a heavy-ion reaction, need a
third particle to conserve energy momentum [1].

– To study the properties of α-particles [2] or determine
the critical temperature of a possible α-particle con-
densate [3–5] needs an in-medium four-body equation.

– Recent results in the Hubbard model indicate, that
three-particle contributions may lead to a different
(lower) critical temperature compared to the simple
Thouless criterion [6]. Question of this type have not
been addressed for nuclear matter.

– The chiral phase transition is often discussed along
with a confinement-deconfinement transition based
on investigating mesons (quark-antiquark states), see,
e.g., ref. [7]. Does this transition happen for nucleons
(three-quark states) at the same density/temperature?
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To investigate these issues a first step is to develop
and solve proper effective in-medium three- and four-
body equations that are valid at finite temperatures and
densities analogous to the Feynman-Galitskii or Bethe-
Goldstone equations [8]. This has been achieved in the
past for the nonrelativistic problem [2,9–11]. These equa-
tions have been derived on the basis of statistical Green
functions [8]. The Green functions have been decoupled
utilizing a cluster expansion, see, e.g., [12]. To tackle these
questions in the (deconfined) quark-phase, in addition,
such in-medium few-body equations must obey special
relativity. As chiral symmetry breaking is presumably re-
stored (up to small current masses) the quarks may be-
come very light objects and therefore relativistic effects
should play a larger role than for isolated systems. Here,
relativity is realized using the light front form of relativis-
tic dynamics [13]. First results are given in refs. [14,15] on
the confinement-deconfinement (Mott) transition.

2 Theory

We use Dyson equations to tackle the many-particle prob-
lem, see, e.g., ref. [12]. This enables us to decouple the hi-
erarchy of Green functions. The Dyson equation approach
used here is based on two ingredients: i) all particles of
a cluster are taken at the same global time, ii) the en-
semble averaging for a cluster is done for an uncorrelated
medium. The resulting decoupled Green functions may be
economically written as resolvents in the n-body space,
where n = 2, 3, 4, . . . is the number of particles in the con-
sidered cluster.

The solution of the one-particle problem in the
Hartree-Fock approximation leads to the following quasi-
particle energy:
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+
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2meff
1

+ΣHF(0). (1)
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The last equation introduces the effective mass that is a
valid concept for the rather low densities considered here
and µeff ≡ µ−ΣHF(0). The Fermi function fi ≡ f(εi) for
the i-th particle is given by

f(εi) =
1

eβ(εi−µ) + 1
. (2)

The resolvent G0 for n noninteracting quasiparticles is

G0(z) = (z −H0)−1N ≡ R0(z)N, H0 =
n∑

i=1

εi, (3)

where G0, H0, and N are formally matrices in n-particle
space. The Matsubara frequency zλ has been analytically
continued into the complex plane, zλ → z [8]. The Pauli
blocking for n-particles is

N = f̄1f̄2 . . . f̄n ± f1f2 . . . fn, f̄ = 1− f, (4)

where the upper sign is for Fermi-type and the lower for
Bose-type clusters. The full resolvent G(z) is given by

G(z) = (z −H0 − V )−1N, V ≡
∑

pairs α

Nα
2 V

α
2 . (5)

Note that V † �= V . For the two-body case as well as for a
two-body subsystem embedded in the n-body cluster the
standard definition of the t-matrix leads to the Feynman-
Galitskii equation for finite temperature and densities [8],

Tα
2 (z) = V α

2 + V α
2 N

α
2 R0(z)Tα

2 (z). (6)

Introducing the Alt-Grassberger-Sandhas (AGS) [16]
transition operator Uαβ(z) the effective inhomogeneous
in-medium AGS equation reads

Uαβ(z)=
(
1−δαβ

)
R−1

0 (z)+
∑
γ �=α

Nγ
2 T

γ
2 (z)R0(z)Uγβ(z). (7)

The homogeneous in-medium AGS equation uses the form
factors defined by

|Fβ〉 ≡
∑

γ

δ̄βγN
γ
2 V

γ
2 |ψB3〉 (8)

to calculate the bound state ψB3

|Fα〉 =
∑

β

δ̄αβN
β
2 T

β
2 (B3)R0(B3)|Fβ〉. (9)

Finally, the four-body bound state is described by∣∣Fσ
β

〉
=

∑
τγ

δ̄στU
τ
βγ(B4)R0(B4)

×Nγ
2 T

γ
2 (B4)R0(B4)

∣∣Fτ
γ

〉
, (10)

where α ⊂ σ, γ ⊂ τ and σ, τ denote the four-body parti-
tions. The two-body input is given in (6) and the three-
body input by (7). Note that, although we have man-
aged to rewrite the above equations in a way close to the
ones for the isolated case, they contain all the relevant in-
medium corrections in a systematic way, i.e. correct Pauli-
blocking and self-energy corrections. The numerical solu-
tion requires some mild approximations that are however
well understood in the context of the isolated few-body
problem.
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Fig. 1. BUU simulation of the deuteron formation during the
central collision of 129Xe + 119Sn at 50MeV/A.
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Fig. 2. Ratio of proton to deuteron numbers as a function
of c.m. energy. The experimental data are from the INDRA
Collaboration.

3 Results

An experiment to explore the equation of state of nuclear
matter is heavy-ion collisions at various energies. Here
we focus on intermediate to low scattering energies and
compare results to a recent experiment 129Xe + 119Sn at
50MeV/A by the INDRA Collaboration [17]. A micro-
scopic approach to tackle the heavy-ion collision is given
by the Boltzmann equation for different particle distri-
butions and solved via a Boltzmann-Uehling-Uhlenbeck
(BUU) simulation [18,19]. The reaction rates appearing
in the collision integrals are a priori medium dependent.
However, previously this medium dependence has been
neglected. Within linear response theory for infinite nu-
clear matter the use of in-medium rates leads to faster
time scales for the deuteron lifetime and the chemical re-
laxation time, as has been shown in detail in refs. [20,21].
This faster time scales should have consequences for the
freeze-out of fragments.

We use the in-medium AGS equations (7) that repro-
duce the experimental data in the limit of an isolated
three-body system. For details on the specific interaction
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Fig. 3. Difference between the pole energy of the bound state
and the continuum, B(n, T ) = Epole − Econt.
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Fig. 4. Critical temperatures of condensation/pairing leading
to superfluid nuclear matter. For an explanation see text.

model see ref. [9]. We investigate the influence of medium-
dependent rates in the BUU simulation of the heavy-ion
collision as compared to the use of isolated (i.e. experi-
mental) rates. Figure 1 shows that the net effect (gain-
minus-loss) of deuteron production becomes larger for the
use of in-medium rates (solid line) compared to using the
isolated rates (dashed line). The change is significant, how-
ever, a comparison with experimental data is difficult since
deuterons may also be evaporating from larger clusters
that have not been taken into account in the present cal-
culation so far. The ratio of protons to deuterons may
be better suited for a comparison to experiments that is
shown in fig. 2. The use of in-medium rates (solid line) lead
to a shape closer to the experimental data (dots) than the
use of isolated rates (dashed line). In these calculation,
besides the change of rates, also the Mott effect has been
taken into account.

Figure 3 shows the dependence of the binding energy
for different clusters at a given temperature T = 10MeV
and at rest in the medium.

In fig. 4 part of the phase diagram of nuclear matter
is shown. The condition for the onset of superfluidity for
α-particles is B(Tc, µ, P = 0) = 4µ. The critical tempera-
ture found by solving the homogeneous AGS equation for
µ < 0 confirms the onset of α condensation even at higher
values (dotted line) than given earlier (solid line, from [3])
based on a variational calculation using the 2 + 2 compo-
nent of the α-particle. For µ > 0 the condition E = 4µ
for the phase transition can also be fulfilled. However, the
significance for a possible quartetting needs further inves-
tigation. Due to the many-channel situation of more than
two-particles equations, the Thouless criterion might be
revisited.
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